

Concept Attainment:

As part of this unit of learning students started with a concept attainment activity. This activity uses a series of slides which have two images, one image which contains the geometric concept that is the focus of the learning and another image which does not contain the geometric concept. The instructions and slides used are shown below via screengrabs of the PowerPoint slides 30-37 from the 2019/2020 Graphics CPD PowerPoint presentation.

Activity 1:

A bicycle wheel rests on the ground and up against a wall as shown. Find accurately the points of contact. Identify the tangent and the normal in each case.

A Point "that which has no part". A point in geometry is a location. It has no size, no width, no length and no depth. Two lines intersect at a point.

Activity 2:

Trace the tangent and normal from Activity 1 onto tracing paper. Using the tracing paper, find accurately the point of contact between the tangent and circle below. Identify and label the right angle $\left(90^{\circ}\right)$.

A Straight line "is a line which lies evenly with the points on itself"

Activity 3:

Construct a tangent to the circle below at point P. Use the tracing paper to help you with your solution.

A Tangent is a straight line which touches a given curve at one point only and doesn't pass through the curve.

Activity 4:

What size is the angle $A B C$? Check it with your protractor. Construct another angle by joining A to any point P on the circumference of the semicircle and then joining back to C. How do the angles compare?

Use the tracing paper from activity 1 to verify your answer.

Activity 5:

Construct accurately a tangent to the circle from point P. Find the point of contact for the tangent. The diagram below will help you with your solution.

Activity 6:

Construct accurately an internal tangent to the circles shown below. Find the points of contact.

Activity 7:

Construct accurately an external tangent to the circles shown below. Find in each case the point of contact.

Analyse the pictures and graphics shown above and identify the tangents seen in the graphics and illustrate the geometry using notes and sketches.

A

1. Join A and B to any point C on the circumference of the semicircle.
2. Join C to the centre of the semicircle.
3. Identify two isosceles triangles.
4. What is the sum of all the internal angles in these two isosceles triangles?
5. Use matching colours to identify angles of equal size.
6. Use two different colours to identify the two inside angles at the centre of the circle.
7. Use the Pie chart graphic below to represent the size of each angle.
8. Can you conclude what the size of angle $A C B$ is?

Notes:

\qquad

Use the four colours to graphically represent the size of the angles in the circle above.

Spatial Reasoning Moment

Construct a tangent to the ellipse at point P, without finding the focal points.

